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1. GW process

Zy, is called a branching process if

Zn

Zo=1 and Zpy1 =Y Xp; for n>0, (1)
=1

where X, ; is the number of offspring of the ith particle in the n
generation, iid, X, ; ~ (p;).
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1. GW process

For a Galton-Watson process (Z,,). Let m =EZ;. Let g be the
extinction probability.

m < 1 is subcritical, ¢ = 1;
m = 1 is critical, ¢ = 1;

m > 1 is supercritical, g < 1.

When m > 1, W = lim,, % is non-degenerate if and only if
EZilog Z; < o0.

Under this condition, the moments of the limit variable W has
been studied by many authors.
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1. GW process

Of particular interest is the existence of the weighted moments of
W of the form EW®[(W) where o > 1 and [ is a positive function
slowly varying at co.

(1) Bingham and Doney 1974 showed that EW (W) < oo if and
only if EZ{'l(Z1) < oo, when o > 1 is not an integer.

(2) Alsmeyer and Rdosler 2004 proved that the same result remains
true for all non-dyadic integer o > 1 (not of the form 2% for some
integer k > 0).

(3) Liang and Liu 2013a proved that the result holds true for all
a>1.
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2. GW process in a random environment

A branching process in a random environment is a natural and
important extension of the GW process.

Let & = (§n)n>0 be i.i.d. and p(&,) be a sequence of
probability distribution.

(Zn)n>0 is called a branching process in the random environment:

if (1) is satisfied and X, ; is a sequence of conditional independent
and distribution random variables, where X, ; ~ (p;(&,)).
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2. GW process in a random environment

Let my, = Ec X, ;.

Elogmg < 0 is subcritical, ¢ = 1;
Elogmgy = 0 is critical, ¢ = 1;
Elogmg > 0 is supercritical, ¢ < 1.

Let

where II,, = E¢Z,, and the limit be .
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2. GW process in a random environment

We consider the supercritical case. W is non-degenerate (which is
also equivalent to the convergence in L! of (W},,)) if and only if

Zylogt Z
E<10gl> < o5 (2)
mo

(see Athreya and Karlin (1971b) for the sufficiency and Tanny
(1988) for the necessity).

* The probability IP is usually called annealed law, while P is
called quenched law.
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3. Weighted moments of W/

We will consider the existence of weighted moments of W of the
form EcWI(W) and EW (W), for which we will show that the
existence conditions are quite different between the annealed case
and the quenched case.

Meanwhile we also consider the same problem for the maximum

variable
W* = sup W,.

n>1
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3. Weighted moments of W/

Let [ be a positive measurable function, defined on some
neighborhood [X, co) of infinity, and satisfying

[(Az)/l(z) = 1 (z — c0) VA > 0;

then [ is said to be slowly varying (in Karamata's sense).

A\

Theorem 1 (Bingham, Goldie and Teugels, 1987, Theorem 1.3.1)

Any slowly varying function | slowly varying at oo is of the form

l(x) = c(z) exp </w E(tt)dt>, x > ap,

ao

where ag > 0, ¢(-) and (-) are measurable with ¢(x) — ¢ for some
constant ¢ € (0,00) and e(z) — 0 as © — 0.

v
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3. Weighted moments of W/

Theorem 2 is the necessary and sufficient condition for the
existence of the annealed weighted moments of W.

Theorem 2 (Liang and Liu 2013)

(Annealed case) Let a« > 1 and [ : [0,00) — [0,00) be a function
slowly varying at co. Assume that Em(lfa < 1. Then the following
assertions are equivalent:

(1) EWI(Wh) < oo,

(2) EW*(W*) < oo,

(3) 0 < EW(W) < o0.
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3. Weighted moments of W/

We obtain the necessary and sufficient conditions for the
existence of quenched weighted moments of W.

Theorem 3

Let I(x) be a function slowly varying at co and ¢(x) = x®l(x) with

Zilogt 7,
mo

a > 1. Assume E < o0 and Elogmg < co. Then the

following assertions are equivalent:
(1) Elog™ Ecp(W1) < o0; (2) E¢p(W) < 005 (3) Ecp(W*) < 0.

v
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3. Weighted moments of W/

Remark 1

The results extend a theorem by Huang and Liu 2014 about the
special case where [ is a constant.

The general case where | is not necessarily a constant makes the
proof much more difficult. And improve the sufficient condition
given by Li, Hu and Liu in 2011 where a completely different
method was used.
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3. Weighted moments of W/

Remark 2

For the equivalence between (2) and (3) we do not need the
condition Elogmgy < oo. Actually, this equivalence is a general
result for martingales; we will prove it by establishing an extended
version of Doob'’s inequality about weighted moments for
nonnegative submartingales, which is of independent interest; see
Theorem 4 below.

14 /23



3. Weighted moments of W/

Theorem four is an extended Doob’ s inequality for
¢-moments on sub-martingale.

Theorem 4

Let (fn,Gn) be a nonnegative submartingale convergent a.s. and in
L. Let ¢(x) = 2%I(x), where a > 1, | is a positive function slowly
varying at oo and locally bounded on [0,00). Then there exist two
constants Cy > 0 and C7 > 0 depending only on ¢, such that

Eo(f) <Eo(f*) < Co + CLES(f),

where f =lim, . f, and f"= SUP,>0 | fal.
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4. Proof of Theorem 4

The difference with our results is that ¢ in Lemma one is a
convex function.

Lemma 1 (Alsmeyer and Rasler 2006, Proposition 1.1)

Let ¢ : [0,00) — [0, 00)
function, with ¢(0) = 0,
z¢'(x)

. z¢' ()
= inf >1 and p}:= su
Pg 0<z<oco P(x) Po 0<x£oo o(x)

be an unbounded, nondecreasing convex

< 00,

where ¢'(x) denotes the right derivative of ¢ at x. Then for each
n > 0, the maximum variable f;, = supo<y<, [k satisfies

v
Bo(r) < (7251) B8
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4. Proof of Theorem 4

Proof of Theorem 4. Step 1: Let ¢ be defined and o = ag + b
where b > 0 and ap > 1. Let 6 > 0 be small enough such that
a — 0§ > ap and a; be large enough such that

og(z)

a—6<¢1(x)<a+5 for all z > a;.

Step 2: We set ¢o(x) = ¢1 () if 2 > a1; ¢o(x) = 2°0a8l1(ar) if
x € [0,a1). ¢2 is a convex function.

Step 3:By calculation, we know pg, > 1 and pZQ < 00. Then, by
Lemma 1, we have

E¢a(f7) < (—22)"%En(fa), where fi= sup fi.
D¢y 0<k<n
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4. Proof of Theorem 4

Step 4:By Jensen's inequality and the monotone convergence
theorem, we get the result of Lemma one with ¢o:

Ed(f*) < <][)¢1’¢i1>p$21a¢2<f>.

Step 5:Because ¢a(z) ~ ¢(z), as x — oo, we know that there exist
two constants Cy > 0 and C; > 0 depending only on ¢, such that

E¢(f*) < Co + C1Eg(f).
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4. Proof of Theorem 4

For a martingale sequence {(f,Gn) : n > 1}, dp = fr — fn—1,
[* =sup,>1|ful and d* =sup,s;|dn|.

Lemma 2 (Burkholder-Davis-Gundy inequality, Chow and Teicher 1995,

Theorem 2)

Let ® : [0,00) — [0,00) be an increasing and continuous function with
®(0) =0 and ®(2X) < c¢®()\) for some ¢ € (0,00) and all A > 0.

(1) For every B € (1,2], there exists a constant B = B, g > 0
depending only on ¢ and (8 such that

E®(f*) < BE®(s(5)) + BED(d"); (3)

E®(f*) < BE®(s(8)) + B E®(d. ),

n=1

1/B
with 5(8) = (z;?_lE(wnﬁgm)) -
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4. Proof of Theorem 4

(2) If @ is convex on [0, 00), then there exist constants
A= A.>0and B = B, > 0, depending only on ¢ such that

AE®(S) < E®(f*) < BE®(S),
where S = (32°°_, d2)'/2. Moreover, for any 3 € (0,2],

n=1"n
E®(f*) < BE®(S(B)),
where S(B) = (3°°°, |d,|?)Y/5. If, additionally, for some
B € (0,2] the function @, /5(z) = ®(z'/P) is subadditive on

[0, 00), then
E®(f*) < B22, E®(|dnl).
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4. Proof of Theorem 4

Lemma 2 (Bingham, Goldie and Teugels, 1987, Theorem 1.5.6)

(Potter's Theorem) (1) If | is slowly varying then for any chosen
constants A > 1,0 > 0, there exists X = X (A, ) such that

U(y)/U(z) < Amax{(y/x)’, (y/2)°} (22 X,y2>Y).

(2) If, further, 1 is bounded away from 0 and co, on every compact
subset of [0, 00), then for every § > 0 there exists A’ = A'(§) > 1
such that

I(y)/U(z) < A'max{(y/x)°, (y/=)°} (z>0,y>0).
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