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1. GW process

Zn is called a branching process if

Z0 = 1 and Zn+1 =

Zn∑
i=1

Xn,i for n ≥ 0, (1)

where Xn,i is the number of offspring of the ith particle in the n
generation, iid, Xn,i ∼ (pj).
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1. GW process

For a Galton-Watson process (Zn). Let m = EZ1. Let q be the
extinction probability.

m < 1 is subcritical, q = 1;

m = 1 is critical, q = 1;

m > 1 is supercritical, q < 1.

When m > 1, W = limn→∞
Zn
mn is non-degenerate if and only if

EZ1 logZ1 <∞.

Under this condition, the moments of the limit variable W has
been studied by many authors.
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1. GW process

Of particular interest is the existence of the weighted moments of
W of the form EWαl(W ) where α > 1 and l is a positive function
slowly varying at ∞.

(1) Bingham and Doney 1974 showed that EWαl(W ) <∞ if and
only if EZα1 l(Z1) <∞, when α > 1 is not an integer.

(2) Alsmeyer and Rösler 2004 proved that the same result remains
true for all non-dyadic integer α > 1 (not of the form 2k for some
integer k ≥ 0).

(3) Liang and Liu 2013a proved that the result holds true for all
α > 1.
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2. GW process in a random environment

A branching process in a random environment is a natural and
important extension of the GW process.

Let ξ = (ξn)n≥0 be i.i.d. and p(ξn) be a sequence of
probability distribution.

(Zn)n≥0 is called a branching process in the random environment:
if (1) is satisfied and Xn,i is a sequence of conditional independent
and distribution random variables, where Xn,i ∼ (pj(ξn)).

6 / 23



2. GW process in a random environment

Let mn = EξXn,i.

E logm0 < 0 is subcritical, q = 1;

E logm0 = 0 is critical, q = 1;

E logm0 > 0 is supercritical, q < 1.

Let

Wn =
Zn
Πn

, n ≥ 0

where Πn = EξZn and the limit be W .
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2. GW process in a random environment

We consider the supercritical case. W is non-degenerate (which is
also equivalent to the convergence in L1 of (Wn)) if and only if

E
(
Z1 log+ Z1

m0

)
<∞ (2)

(see Athreya and Karlin (1971b) for the sufficiency and Tanny
(1988) for the necessity).

? The probability P is usually called annealed law, while Pξ is
called quenched law.
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3. Weighted moments of W

We will consider the existence of weighted moments of W of the
form EξWαl(W ) and EWαl(W ), for which we will show that the
existence conditions are quite different between the annealed case
and the quenched case.

Meanwhile we also consider the same problem for the maximum
variable

W ∗ = sup
n≥1

Wn.
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3. Weighted moments of W

Definition 1

Let l be a positive measurable function, defined on some
neighborhood [X,∞) of infinity, and satisfying

l(λx)/l(x)→ 1 (x→∞) ∀λ > 0;

then l is said to be slowly varying (in Karamata’s sense).

Theorem 1 (Bingham, Goldie and Teugels, 1987, Theorem 1.3.1)

Any slowly varying function l slowly varying at ∞ is of the form

l(x) = c(x) exp
(∫ x

a0

ε(t)

t
dt
)
, x > a0,

where a0 > 0, c(·) and ε(·) are measurable with c(x)→ c for some
constant c ∈ (0,∞) and ε(x)→ 0 as x→∞.
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3. Weighted moments of W

Theorem 2 is the necessary and sufficient condition for the
existence of the annealed weighted moments of W.

Theorem 2 (Liang and Liu 2013)

(Annealed case) Let α > 1 and l : [0,∞)→ [0,∞) be a function
slowly varying at ∞. Assume that Em1−α

0 < 1. Then the following
assertions are equivalent:
(1) EWα

1 l(W1) <∞;
(2) EW ∗αl(W ∗) <∞;
(3) 0 < EWαl(W ) <∞.
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3. Weighted moments of W

We obtain the necessary and sufficient conditions for the
existence of quenched weighted moments of W.

Theorem 3

Let l(x) be a function slowly varying at ∞ and φ(x) = xαl(x) with

α > 1. Assume E
(
Z1 log

+ Z1

m0

)
<∞ and E logm0 <∞. Then the

following assertions are equivalent:
(1) E log+ Eξφ(W1) <∞; (2) Eξφ(W ) <∞; (3) Eξφ(W ∗) <∞.
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3. Weighted moments of W

Remark 1

The results extend a theorem by Huang and Liu 2014 about the
special case where l is a constant.
The general case where l is not necessarily a constant makes the
proof much more difficult. And improve the sufficient condition
given by Li, Hu and Liu in 2011 where a completely different
method was used.
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3. Weighted moments of W

Remark 2

For the equivalence between (2) and (3) we do not need the
condition E logm0 <∞. Actually, this equivalence is a general
result for martingales; we will prove it by establishing an extended
version of Doob’s inequality about weighted moments for
nonnegative submartingales, which is of independent interest; see
Theorem 4 below.
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3. Weighted moments of W

Theorem four is an extended Doob.s inequality for
φ-moments on sub-martingale.

Theorem 4

Let (fn,Gn) be a nonnegative submartingale convergent a.s. and in
L1. Let φ(x) = xαl(x), where α > 1, l is a positive function slowly
varying at ∞ and locally bounded on [0,∞). Then there exist two
constants C0 > 0 and C1 > 0 depending only on φ, such that

Eφ(f) ≤ Eφ(f∗) ≤ C0 + C1Eφ(f),

where f = limn→∞ fn and f∗ = supn≥0 |fn|.
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4. Proof of Theorem 4

The difference with our results is that φ in Lemma one is a
convex function.

Lemma 1 (Alsmeyer and Rösler 2006, Proposition 1.1)

Let φ : [0,∞)→ [0,∞) be an unbounded, nondecreasing convex
function, with φ(0) = 0,

pφ := inf
0<x<∞

xφ′(x)

φ(x)
> 1 and p∗φ := sup

0<x<∞

xφ′(x)

φ(x)
<∞,

where φ′(x) denotes the right derivative of φ at x. Then for each
n ≥ 0, the maximum variable f∗n = sup0≤k≤n fk satisfies

Eφ(f∗n) ≤
(

pφ
pφ−1

)p∗φ
Eφ(fn).
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4. Proof of Theorem 4

Proof of Theorem 4. Step 1: Let φ1 be defined and α = α0 + b
where b > 0 and α0 > 1. Let δ > 0 be small enough such that
α− δ > α0 and a1 be large enough such that

α− δ < αφ(x)
φ1(x)

< α+ δ for all x ≥ a1.

Step 2: We set φ2(x) = φ1(x) if x ≥ a1; φ2(x) = xα0ab1l1(a1) if
x ∈ [0, a1). φ2 is a convex function.
Step 3:By calculation, we know pφ2 > 1 and p∗φ2 <∞. Then, by
Lemma 1, we have

Eφ2(f∗n) ≤ (
pφ2

pφ2 − 1
)
p∗φ2Eφ2(fn), where f∗n = sup

0≤k≤n
fk.
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4. Proof of Theorem 4

Step 4:By Jensen’s inequality and the monotone convergence
theorem, we get the result of Lemma one with φ2:

Eφ2(f∗) ≤ (
pφ2

pφ2 − 1
)
p∗φ2Eφ2(f).

Step 5:Because φ2(x) ∼ φ(x), as x→∞, we know that there exist
two constants C0 > 0 and C1 > 0 depending only on φ, such that

Eφ(f∗) ≤ C0 + C1Eφ(f).
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4. Proof of Theorem 4

For a martingale sequence {(fn,Gn) : n ≥ 1}, dn = fn − fn−1,
f∗ = supn≥1 |fn| and d∗ = supn≥1 |dn|.

Lemma 2 (Burkholder-Davis-Gundy inequality, Chow and Teicher 1995,
Theorem 2)

Let Φ : [0,∞)→ [0,∞) be an increasing and continuous function with
Φ(0) = 0 and Φ(2λ) ≤ cΦ(λ) for some c ∈ (0,∞) and all λ > 0.

(1) For every β ∈ (1, 2], there exists a constant B = Bc,β > 0
depending only on c and β such that

EΦ(f∗) ≤ BEΦ(s(β)) +BEΦ(d∗); (3)

EΦ(f∗) ≤ BEΦ(s(β)) +B

∞∑
n=1

EΦ(|dn|),

with s(β) =

(∑∞
n=1 E

(
|dn|β |Gn−1

))1/β

.
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4. Proof of Theorem 4

(2) If Φ is convex on [0,∞), then there exist constants
A = Ac > 0 and B = Bc > 0, depending only on c such that

AEΦ(S) ≤ EΦ(f∗) ≤ BEΦ(S),

where S = (
∑∞

n=1 d
2
n)1/2. Moreover, for any β ∈ (0, 2],

EΦ(f∗) ≤ BEΦ(S(β)),

where S(β) = (
∑∞

n=1 |dn|β)1/β. If, additionally, for some
β ∈ (0, 2] the function Φ1/β(x) = Φ(x1/β) is subadditive on
[0,∞), then

EΦ(f∗) ≤ B
∑∞

n=1 EΦ(|dn|).
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4. Proof of Theorem 4

Lemma 2 (Bingham, Goldie and Teugels, 1987, Theorem 1.5.6)

(Potter’s Theorem) (1) If l is slowly varying then for any chosen
constants A > 1, δ > 0, there exists X = X(A, δ) such that

l(y)/l(x) ≤ Amax{(y/x)δ, (y/x)−δ} (x ≥ X, y ≥ Y ).

(2) If, further, l is bounded away from 0 and ∞, on every compact
subset of [0,∞), then for every δ > 0 there exists A′ = A′(δ) > 1
such that

l(y)/l(x) ≤ A′max{(y/x)δ, (y/x)−δ} (x > 0, y > 0).
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Thank you!
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